Contoh Soal Aturan Pengisian Tempat Perkalian

Contoh Soal Aturan Pengisian Tempat Perkalian

Beberapa Contoh Soal Aturan Penjumlahan, Perkalian, Permutasi, dan Kombinasi

Contoh Soal Aturan Perkalian beserta Jawabannya SMA Kelas 12

Berikut ini beberapa contoh soal aturan penjumlahan, perkalian, permutasi, dan kombinasi lengkap dengan pembahasannya:

Contoh 2 – Banyak bilangan ganjil yang dapat disusun

Dari angka-angka 4, 5, 6, 7, 8, dan 9 akan disusun bilangan ganjil terdiri dari tiga angka berbeda. Banyak bilangan ganjil yang dapat disusun adalah …. A. 120 B. 90 C. 60 D. 36 E. 20

Pembahasan: Susunan bilangan yang akan dicari terdiri dari tiga angka sehingga perlu untuk menentukan bagaimana cara angka-angka menempati tiga tempat berikut.

Cara angka 4, 5, 6, 7, 8, dan 9 (ada enam angka) menempati tiga tempat mengikuti ketentuan berikut.

Kotak ketiga: Sebuah bilangan ganjil akan selalu memiliki satuan angka ganjil. Sehingga angka yang dapat menempati kotak ketiga hanya 5, 7, dan 9. Ada tiga bilangan yang dapat menempati kotak ketiga maka P3 = 3.

Kotak pertama:Kotak pertama dapat ditempati banyak angka yang tersedia dikurang satu karena satu angka telah digunakan pada kotak ketiga. Maka banyak angka yang dapat menempati kotak pertama adalah P1 = 6 – 1 = 5.

Kotak kedua: Kotak kedua dapat ditempati banyak angka yang tersedia dikurang dua karena dua angka telah digunakan pada kotak ketiga dan pertama. Maka banyak angka yang dapat menempati kotak kedua adalah P2 = 6 – 2 = 4.

Banyak angka-angka menempati kotak:

Banyaknya bilangan ganjil terdiri dari tiga angka berbeda adalah P1 × P2 × P3 = 5 × 4 × 3 = 60 bilangan. Jadi, banyak bilangan ganjil yang dapat disusun adalah 60 bilangan. Jawaban: C

Contoh 1 – Banyaknya bilangan dengan angka-angka berlainan

Bilangan terdiri dari tiga angka disusun dari angka-angka 2, 3, 5, 6, 7, dan 9. Banyaknya bilangan dengan angka-angka berlainan yang lebih kecil dari 400 adalah …A.   20 B.   35 C.   40 D.   80 E.   120

Pembahasan: Bilangan terdiri dari tiga angka, sehingga sediakan tiga kotak yang perlu diisi oleh angka-angka sesuai syarat yang diberikan.

Banyak angka yang tersedia untuk mengisi tempat adalah 2, 3, 5, 6, 7, dan 9. Cara keenam angka tersebut mengisi slot mengikuti ketentuan berikut.

Banyak angka yang mengisi tiga tempat:

Jadi, bilangan tiga angka yang nilainya di bawah 400 yang dapat disusun dari angka 2, 3, 5, 6, 7, dan 9 adalah 2 × 5 × 4 = 40 bilangan. Jawaban: C

Baca Juga: Perbadaan Permutasi dan Kombinasi

Tabel Perkalian 1-10 dan Cara agar Cepat Menghafal Perkalian

2. Rendy ingin membuatkan plat nomor kendaraan yang terdiri dari 4 angka yang dipilih dari angka-angka 1, 2, 3, 4, 5 dan dalam plat nomor itu boleh ada angka yang sama. Berapa banyak plat nomor dapat dibuat?

Rumus Excel Penting Diketahui: Pengurangan, Perkalian, Penjumlahan

- Banyak tas yang dimiliki Tasya ada 3. Tasya dapat memilih salah satu dari 3 tas tersebut.

Itulah Contoh Soal Aturan Penjumlahan, Perkalian, Permutasi, dan Kombinasi

Pencacahan merupakan sebuah materi dalam pelajaran matematika yang akan membuat permasalahan sehari-hari lebih mudah diselesaikan.

Masing-masing aturan penjumlahan, perkalian, permutasi, dan kombinasi akan bermanfaat bila kamu senantiasa menerapkannya.

Semoga contoh soal aturan penjumlahan, perkalian, permutasi, dan kombinasi di atas bisa membuatmu semakin paham akan materi ini dan juga mendapatkan nilai yang terbaik, ya!

Klik dan dapatkan info kost di dekat kampus idamanmu:

Kost Dekat UNPAD Jatinangor

Kost Dekat UNDIP Semarang

Kost Dekat Unnes Semarang

Kost Dekat ITB Bandung

Kost Dekat ITS Surabaya

Kost Dekat Unesa Surabaya

Kost Dekat UNAIR Surabaya

Kost Dekat UIN Jakarta

JAKARTA, iNews.id - Contoh soal aturan perkalian berikut patut dipelajari. Aturan perkalian merupakan salah satu konsep dasar matematika yang penting untuk dikuasai.

Konsep ini membantu siswa memahami berbagai situasi di mana dua kejadian independen terjadi secara bersamaan. Untuk mengukur kemampuan siswa dalam memahami materi mengenai aturan perkalian, soal-soal berikut dapat dikerjakan.

Contoh Soal Perkalian

Sebagai seorang Sales, Arman dituntut untuk selalu berpenampilan menarik saat bekerja. Ia pun hendak membuat sebuah capsule wardrobe yang terdiri dari 5 kemeja, 7 celana formal, dan 3 blazer.

Dari data tersebut, tentukanlah berapa banyak cara atau variasi Arman bisa berpakaian!

Arman bisa memakai item pakaiannya secara bersamaan yaitu celana, kemeja, dan blazer. Berdasarkan aturan perkalian, maka banyaknya variasi outfit yang bisa dikenakan oleh Arman adalah berikut ini:

Jadi, banyaknya variasi outfit yang bisa didapatkan oleh Arman adalah 105 ide outfit.

Sebagai seorang manajer restoran di Bali, Vina memiliki tugas membuat variasi set menu. Saat ini restoran memiliki 5 macam menu pembuka, 10 menu utama, dan 3 menu penutup serta 5 menu minuman.

Dari keterangan tersebut, berapakah jumlah set menu yang bisa dibuat oleh Vina?

Setiap customer bisa makan lebih dari satu hidangan yang membentuk satu set menu. Berdasarkan aturan perkalian, maka jumlah set menu yang bisa dibuat oleh Vina adalah sebagai berikut ini:

Jadi, jumlah variasi set menu yang bisa dibuat oleh Vina adalah 750 variasi.

Itulah bagian kedua dari contoh soal aturan penjumlahan, perkalian, permutasi, dan kombinasi. Yuk, lanjut pelajari bagian contoh soal permutasi di bawah!

23 Contoh Soal Psikotes Matematika + Jawabannya

Contoh Soal Penjumlahan

Ahmed memiliki beragam jenis kendaraan dengan jumlah yang berbeda-beda. Ia memiliki 4 buah mobil, 5 buah sepeda motor, dan 3 buah sepeda.

Dari keterangan tersebut, tentukan berapa jumlah cara Ahmed pergi ke kantor!

Perlu dipahami bahwa Ahmed hanya bisa mengendarai satu dari semua kendaraan yang Ia miliki. Mustahil baginya untuk mengendarai beberapa secara bersamaan.

Berdasarkan aturan penjumlahan, total jumlah cara yang bisa dilakukan Ahmed untuk pergi ke kantor ialah:

Jadi, Ahmed bisa ke kantor dengan menggunakan 12 cara.

Ella suka sekali mendengarkan musik dan dia ingin memperluas genre musik yang didengarkannya. Ia pun membuat sebuah daftar putar pada aplikasi streaming musik.

Daftar putar tersebut terdiri dari 5 lagu genre pop, 7 lagu genre jazz, dan 8 lagu genre opera. Dari data tersebut, tentukanlah ada berapa cara Ella bisa memilih lagu yang ingin Ia dengar!

Ella hanya bisa mendengarkan lagu pilihannya satu. Ia tidak bisa mendengarkannya secara bersamaan.

Berdasarkan aturan penjumlahan, maka total banyak cara Ella memilih lagu yang akan dinikmatinya adalah:

Jadi, ada 20 cara Ella bisa memilih lagu untuk didengarkan.

Itulah bagian pertama dari contoh soal aturan penjumlahan, perkalian, permutasi, dan kombinasi. Yuk, lanjut pelajari bagian contoh soal aturan perkalian di bawah!

Rumus Aturan Pengisian Tempat

Rumus aturan pengisian tempat adalah perkalian bilangan-bilangan yang menempati tempat tersedia. Misalkan tersedia n buah tempat. Banyak bilangan yang dapat menempati slot pertama, kedua, dan seterusnya adalah p1, p2, …, pn.

Banyaknya susunan yang terjadi adalah p1 × p2 × p2 × … × pn.

Contoh soal:Tentukan banyak bilangan yang terdiri atas empat angka berbeda dari angka 1, 2, 3, 4, 5, dan 6!

Contoh susunan bilangan yang mungkin adalah 1.234, 3.125, 2.345, dan lain sebagainya. Cara mendaftar semua bilangan yang mungkin akan memakan waktu yang sangat lama. Sehingga sangat tidak dianjurkan. Aturan pengisian tempat dapat menyelesaikan permasalahan seperti ini dengan lebih baik.

Contoh 3 – Bilangan yang nilainya kurang dari 500

Dari angka 2, 4, 5, 6, 8, 9 akan dibentuk bilangan ganjil yang terdiri dari 3 digit berbeda. Banyak bilangan yang terbentuk yang nilainya kurang dari 500 adalah ….A. 144 B. 72 C. 24 D. 20 E. 16

Pembahasan: Untuk soal ini dimulai dari menentukan banyak angka yang menempati kotak ketiga. Langkah ini dilakukan untuk membentuk bilangan ganjil.

Selanjutnya adalah menentukan banyak angka yang bisa menempati kotak pertama untuk memenuhi bilangan kurang dari 500. Terakhir adalah menentukan banyak angka yang dapat menempati kotak kedua.

Cara angka-angka menempati kotak:

Banyaknya bilangan ganjil dengan 3 digit berbeda adalah P1 × P2 × P3 = 2 × 4 × 2 = 16 bilangan. Jadi, banyak bilangan yang terbentuk yang nilainya kurang dari 500 adalah 16 bilangan. Jawaban: E

Demikianlah tadi ulasan aturan pengisian tempat (filling slots) dan contoh soalnya. Terima kasih sudah mengunjungi idschool(dot)net, semoga bermanfaat!

Contoh Soal Aturan Penjumlahan, Perkalian, Permutasi, dan Kombinasi beserta Pembahasannya – Mendekati ulangan harian atau ujian, cara terbaik untuk belajar lebih efektif adalah dengan mengerjakan contoh soal.

Bila kamu sedang mencari contoh soal aturan penjumlahan, perkalian, permutasi, dan kombinasi; maka kamu berada di halaman yang tepat! Lanjut baca hingga akhir, ya!